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Abstract Silica gel is widely used in commercial applications as a water adsorbent
due to its properties including hydrothermally stable, high water sorption capacity,
low regeneration temperature, low cost and wide range of pore diameters. Since the
water sorption capacity of silica gel strongly depends on the pore size and structure,
which can be controlled during synthesis, this paper study the effect of pore shapes and
dimensions of silica gel upon the adsorption of a water molecule aiming at maximising
the water sorption capacity. In particular, we consider three types of pore structures,
namely cylindrical, square prismatic and conical pores. On using the Lennard-Jones
potential and a continuum approximation, we find that the minimum radii for a water
molecule to be accepted into cylindrical, square prismatic and conical pores are 4.009,
3.7898 and 4.4575 Å, respectively. For cylindrical and square prismatic pores, the crit-
ical radii which maximise the adsorption energy are 4.5189 and 4.1903 Å, respectively.
Knowledge of these critical pore sizes may be useful for the manufacturing process
of silica gel that will maximise the water sorption capacity.
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1 Introduction

Nanopores receive considerable attention for possible industrial and medical applica-
tions, particularly their use as water adsorbents [1], vehicles for enzyme encapsula-
tion [2], biosensors and targeted drug and gene delivery [3]. Water sorption behaviour
in nanoporous materials plays an important role in the design and manufacture of
advanced materials and many nanodevices. The water sorption behaviour of a sorbent
depends on many factors, including the structure and the chemical composition of the
nanoporous material, the presence of charged species, the type of framework structure
and the hydration level. Due to the demand for materials with high sorption capacity
and high selectivity toward water at different concentrations, several water adsorbents
have been discovered. They can be classified into three main categories: (i) inorganic
materials (zeolites, clays and silica), (ii) carbon based adsorbents (activated carbons,
graphite, carbon molecular sieves and pre-shaped carbon fibres and nanotubes) and
(iii) organic polymers [1]. The most studied adsorbents for water are microporous
materials (zeolites), activated carbon, and silica gels. Commercially, silica gels and
zeolites are the dominant hydrophilic sorbents for water sorption as they are hydrother-
mally stable and have high water sorption capacity and low cost. However, silica gels
have advantages over zeolites due to the lower regeneration temperature, lower cost
and a wider range of pore diameters, typically between 5 and 3,000 Å [1]. Commercial
applications for silica gel range from water and moisture adsorbents for preservation of
chemicals and foods, enzyme and protein carriers, organic acids removers, industrial
gas purifiers to a preservation tool for controlling relative humidity in laboratories and
in storage [2,4–9].

Silica gel is a chemically inert, nontoxic, polar and dimensionally stable amorphous
form of SiO2. Depending on the synthesis process, silica gels have different surface
areas, pore volumes and particle sizes [1]. As a result, it is possible during the manufac-
turing process to adjust the pore size range to best fit application needs. Adsorption of
water molecules into silica gel pores can be attributed to a physical process generally
referred to as physical adsorption, or physisorption, caused by van der Waals forces,
or a chemical process referred to as chemical adsorption or chemisorption, involving
valency forces [10,11]. In this paper, we focus on physisorption where we model the
van der Waals interaction between a water molecule and a pore of silica gel using the
Lennard-Jones potential and a continuum approach. For more details of this approach
we refer the readers to Girifalco et al. [12] and Cox et al. [13,14].

The adsorption of liquids or gases and vapors into the pores of silica gel strongly
depends on the pore size and structure [1,15]. Several researches show that the reduc-
tion in pore size of silica gels can significantly increase water sorption capability. For
example, Dawoud et al. [16] explore the role of pore size of silica gels by studying
sequentially the sorption capacity of commercial samples towards water vapor. They
show that the water loading of microporous silica is twice higher than in mesopor-
ous, which is explained by an increment of pore volume when the pore size is being
reduced. This result is supported by Chua et al. [17] who demonstrate that the pore
volume and the surface area play important roles in achieving a high water adsorp-
tion uptake in nanoporous materials. Thus to improve the sorptivity of silica gel, a
decrease of pore diameter is desirable, which can be done through changing the silica
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solubility during the preparation process. The question that remains is to what extent
we can decrease the size without too much compromising on the sorption capacity. As
such, this paper aims to determine the effective pore size that gives rise to the highest
sorption capacity. Since the shape of the pores also strongly affects water sorption
behaviour, this paper studies three types of pore structures, namely cylindrical, square
prismatic and conical and for each pore shape, we determine the critical dimension
which maximises the water sorption capacity.

In the following section, we introduce the Lennard-Jones potential and we adopt a
continuum approach to model the interactions between pores of silica gel and a water
molecule. To model an interaction involving a water molecule, similar to [18] we con-
sider a water molecule as a spherical entity where we assume that an oxygen atom is
situated at the centre of a sphere with two hydrogen atoms located on its surface. As
such, for each type of pore structures we determine an analytical expression for the
interaction energy between an atom and a spherical surface, as shown in Sects. 3 and
4. In Sect. 5 numerical results are provided, while a summary of the paper is given in
the final section.

2 Lennard-Jones function and continuum approximation

We employ the Lennard-Jones potential function and a continuum approximation to
determine the molecular interatomic energy between two molecules. The 6–12 Len-
nard-Jones potential function is given by

� = − A

ρ6 + B

ρ12 , (1)

where ρ denotes the distance between two typical points, and A and B are the attractive
and repulsive Lennard-Jones constants, respectively. Equation (1) can also be written
as

� = 4ε

[
−

(
σ

ρ

)6

+
(
σ

ρ

)12
]
,

where ε denotes a well depth and σ is the van der Waals diameter, and from which we
may deduce A = 4εσ 6 and B = 4εσ 12. The Lennard-Jones constants in the system
of two atomic species can be obtained using the empirical combining laws or mixing
rules [19], which are given by

ε12 = √
ε1ε2, σ12 = σ1 + σ2

2
,

where 1 and 2 refer to the respective individual atoms.
Using a continuum approach, where the atoms at discrete locations on the mol-

ecule are averaged over a surface, the molecular interatomic energy is obtained by
calculating integrals over the surfaces of each molecule, namely
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E = η1η2

∫
S1

∫
S2

(
− A

ρ6 + B

ρ12

)
d S2d S1, (2)

whereη1 andη2 represent the mean surface density of atoms on each molecule. Further,
we may define the integral In in the form of

In =
∫
S1

∫
S2

ρ−2nd S2d S1, n = 3, 6, (3)

and therefore, E = η1η2(−AI3 + B I6).
The van der Waals interaction force between two molecules is given by

FvdW = −∇E, (4)

where the energy E is given by (2). Due to the symmetry of problem configurations
in this paper, we only need to consider the force in the axial direction. The axial force
in the z-direction is obtained by differentiating the integrated Lennard-Jones potential
with respect to Z , which is defined as the distance between two molecules in the
z-direction, therefore (4) simplifies to

Fz = −∂E

∂Z
.

In this paper, we aim to optimize the radius of the pore which gives rise to the max-
imum adsorption energy. Similar to the suction energy described by Cox et al. [13],
the adsorption energy W defined here is the total work done by the interaction force
upon a molecule entering the pore. Mathematically, this can be represented by

W =
∞∫

−∞
Fz(Z)d Z . (5)

In the case of a finite pore length, the value of the adsorption energy defined by (5)
goes to zero since the work done to move the molecule from the positive to the negative
directions are equal and opposite sign. Therefore, when considered the pore of finite
length L , the lower and the upper limits of the integral in (5) need to be changed to
−L/2 and L/2, respectively.

3 Interaction energies for different pore shapes and a single atom

In this section, we determine the adsorption behaviour of a single atom into three dif-
ferent pore shapes which are cylindrical, square prismatic and conical pores, as shown
in Fig. 1. On using the Lennard-Jones potential function together with the continuum
approximation, the total interaction energies for the three systems are derived.
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(a)

(b)

(c)

Fig. 1 Model for a cylindrical, b square prismatic and c conical pore shapes

3.1 Cylindrical pore shape

With reference to the Cartesian coordinate system (x, y, z), a cylindrical pore shape is
assumed to be co-axially located on the z-axis and one end centred at the origin with
the length L in the positive z-direction, as shown in Fig. 1a. An arbitrary point on the
surface of the pore has the coordinates (b cos θ, b sin θ, z) where b is the pore radius
and −π ≤ θ ≤ π . With reference to the same Cartesian coordinate system (x, y, z),
an atom is located at (0, 0, L + Z) where Z is the distance between the atom and the
pore, and for positive (negative) value of Z the atom is outside (inside) the cylindrical
pore. Therefore, the distance from the atom to a typical surface element on the pore
is given by ρ2 = b2 + (z − Z − L)2, and the integral In defined by (3) becomes

In = b

π∫
−π

L∫
0

1

[b2 + (z − Z − L)2]n
dzdθ.
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Then we make a substitution b tanψ = z − Z − L , and we may deduce

In = 2π

b2n−2

− tan−1(Z/b)∫
− tan−1[(Z+L)/b]

cos2(n−1) ψdψ,

and

∫
cos2(n−1) ψdψ

= 1

22(n−1)

[(
2(n − 1)

(n − 1)

)
ψ +

n−2∑
k=0

(
2(n − 1)

k

)
sin[(2n − 2k − 2)ψ]

(n − k − 1)

]
, (6)

where
(n

m

)
is the binomial coefficient. By evaluating (6) at ψ = − tan−1(Z/b) and

ψ = − tan−1[(Z + L)/b], an analytical expression for In may be obtained. The total
interaction energy for an atom adsorbed into a cylindrical pore is given by Ec =
η1(−AI3 + B I6) where η1 denotes the mean atomic surface density of the pore.

3.2 Square prismatic pore shape

With reference to the Cartesian coordinate system (x, y, z), the centre of a square
prismatic pore is assumed to be located co-axially on the z-axis. The dimensions of
the pore are assumed to be 2b in width, 2b in height and L in length, as shown in
Fig. 1b. Consequently, an arbitrary point on each side of the pore has the coordinates
(b, y, z), (−b, y, z), (x, b, z) and (x,−b, z), and we note that b is assumed to be the
radius of the pore in order to compare this result with the other two pore shapes.
With reference to the same Cartesian coordinate system (x, y, z), an atom is located at
(0, 0, L + Z) where Z is the distance between the atom and the pore, and for positive
(negative) value of Z the atom is outside (inside) the square prismatic pore.

The interaction energy between an atom and a square prismatic pore can be thought
of as an interaction energy between an atom and four planes. The distance from the
atom to a typical point on each plane can be written as ρ2 = b2 + s2 + (z − Z − L)2

where s represents x or y for the four planes and s ∈ (−b, b). Here we consider only
the interaction energy for one plane, and the total energy of the system can be obtained
by multiply by four. Therefore, In becomes

In =
L∫

0

b∫
−b

1

[b2 + s2 + (z − Z − L)2]n
dsdz.
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Further, we define Jn in the form

Jn =
b∫

−b

1

[b2 + s2 + (z − Z − L)2]n
ds = 2

b∫
0

1

[b2 + s2 + (z − Z − L)2]n
ds,

where we make the substitution s = √
b2 + (z − Z − L)2 tanψ and proceed as in the

previous section which produces

J3 = 2

[b2 + (z − Z − L)2]5/2

{
3

8
tan−1

(
b√

b2 + (z − Z − L)2

)

+3

8

b[b2 + (z − Z − L)2]1/2

[2b2 + (z − Z − L)2]
+1

4

b[b2 + (z − Z − L)2]3/2

[2b2 + (z − Z − L)2]2

}
,

and

J6 = 2

[b2 + (z − Z − L)2]11/2

{
63

256
tan−1

(
b√

b2 + (z − Z − L)2

)

+ 63

256

b[b2 + (z − Z − L)2]1/2

[2b2 + (z − Z − L)2] + 21

128

b[b2 + (z − Z − L)2]3/2

[2b2 + (z − Z − L)2]2

+ 21

160

b[b2 + (z − Z − L)2]5/2

[2b2 + (z − Z − L)2]3 + 9

80

b[b2 + (z − Z − L)2]7/2

[2b2 + (z − Z − L)2]4

+ 1

10

b[b2 + (z − Z − L)2]9/2

[2b2 + (z − Z − L)2]5

}
.

Further, there are two forms of integrals needed to be determined which are

Ks,t =
L∫

0

dz

[b2 + (z − Z − L)2]s[2b2 + (z − Z − L)2]t
,

Ls =
L∫

0

1

[b2 + (z − Z − L)2]s/2 tan−1

{
b√

b2 + (z − Z − L)2

}
dz,

where s and t are certain positive integers corresponding to the power appearing in J3
and J6.
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Now we consider Ks,t and make a substitution u = z − Z − L , and we may deduce

Ks,t = 1

2t b2s+2t

Z+L∫
Z

du

[1 + (u2/b2)]s{1 + [u2/(2b2)]}t
,

where the integrand is a rational function which can be evaluated for specific s and t .
Next we consider Ls , and for convenience we define λ = √

b2 + (z − Z − L)2.
Since (b/λ) < ∞ and from Gradshteyn and Ryzhik [20] (1.644.1) we obtain

tan−1
(

b

λ

)
=

∞∑
k=0

(2k)!
22k(k!)2(2k + 1)

b2k+1

(λ2 + b2)k+1/2 ,

and then

Ls =
∞∑

k=0

(2k)!
22k(k!)2(2k+1)

b2k+1

L∫
0

dz

[b2+(z−Z−L)2]s/2[2b2+(z−Z−L)2]k+1/2 .

which is in the form of Ks/2,k+1/2.
Therefore, the total interaction energy between a single atom and a square prismatic

pore is given by

Eb = 4η1

[
−2A

(
3

8
L5+3b

8
K2,1+b

4
K1,2

)
+2B

(
63

256
L11+63b

256
K5,1+21b

128
K4,2

+21b

160
K3,3+9b

80
K2,4+ b

10
K1,5

)]
,

where η1 represents the mean atomic surface density for the square prismatic pore,
and the factor 4 comes from the fact that the square prismatic pore has four identical
plane sides.

3.3 Conical pore shape

In this section, we determine the interaction energy between a single atom and a con-
ical pore, where the vertex of the cone is assumed to be located at the origin and
the axis of the cone is assumed to be co-axial with the z-axis, as shown in Fig. 1c.
With reference to a rectangular Cartesian coordinate system (x, y, z) with the origin
located at the vertex of the cone, a typical point on the cone surface has coordinates
(r cos θ, r sin θ, z). The cone has vertex angle 2α with base radius b and height L ,
and r = z tan α where tan α = b/L . With reference to the same coordinate system,
an atom is located at (0, 0, Z + L) where Z is the distance from the cone base to the
atom. Therefore, the distance between a typical point on the conical pore to the atom
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is given by

ρ2 = r2 + (z − Z − L)2 = z2 sec2 α − 2(Z + L)z + (Z + L)2.

By using the Lennard-Jones potential together with the continuum approximation,
the integral In can be written as

In = tan α

cosα

π∫
−π

L∫
0

z

[z2 sec2 α − 2(Z + L)z + (Z + L)2]n
dzdθ,

where (z tan α)/ cosα is the factor arising from the surface integral, and the derivation
details can be found in [21]. Further, we may deduce

In = 2π
tan α

cosα

L∫
0

z

[z2 sec2 α − 2(Z + L)z + (Z + L)2]n
dz.

From Gradshteyn and Ryzhik [20] (2.174), we obtain

In = π sin α

(1 − n)

{
1

[z2 sec2 α − 2(Z + L)z + (Z + L)2]n−1

−2(n − 1)(Z + L)

L∫
0

dz

[z2 sec2 α − 2(Z + L)z + (Z + L)2]n

⎫⎬
⎭ ,

where the above integral can be determined for specific value of n. Finally, the
total interaction energy between a conical pore and a single atom is given by
Eo = η1(−AI3 + B I6).

4 Interaction energies for different pore shapes and a spherical molecule

In this section we determine the potential energies for a spherical molecule interacting
with three different pore structures. In nature, proteins such as trypsin when folded
can be viewed as spherical structures, thus the adsorption of a spherical molecule into
a pore is of particular interest as it can be used to study the immobilization of proteins
into porous materials [2].

Here, we first consider the interaction energy between a sphere and a point as
depicted in Fig. 2. Then, we assume that the point is the atom located on the surface
of a pore and as a result the total energy of the system can be determined utilizing a
surface integral technique.
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Fig. 2 Schematic for sphere
interact with single atom

Following the work of Cox et al. [13], the interaction energy between a spherical
molecule of radius a and a single atom can be given by

E = πaη2

δ

{
A

2

[
1

(a + δ)4
− 1

(a − δ)4

]
− B

5

[
1

(a + δ)10 − 1

(a − δ)10

]}
, (7)

where η2 represents the mean atomic surface density of the sphere. By placing frac-
tions over common denominators, expanding and reducing to fractions in terms of
powers of (δ2 − a2), it can be shown that

A

2δ

[
1

(a + δ)4
− 1

(a − δ)4

]
= −4a A

[
1

(δ2 − a2)3
+ 2a2

(δ2 − a2)4

]
, (8)

B

5δ

[
1

(a + δ)10 − 1

(a − δ)10

]
= −4aB

5

[
5

(δ2 − a2)6
+ 80a2

(δ2 − a2)7
+ 336a4

(δ2 − a2)8

+ 512a6

(δ2 − a2)9
+ 256a8

(δ2 − a2)10

]
. (9)

The total interaction energy between the spherical molecule and the pore is obtained
by performing surface integrals for (7) over the cylindrical, square prismatic and con-
ical pore shapes which are detailed in Sects. 4.1, 4.2 and 4.3, respectively. Further, we
define

Jn =
∫
S

1

(δ2 − a2)n
d S, (10)

where n is a positive integer corresponding to the power of the polynomials appearing
in (8) and (9), and d S is the surface element of the three different pore shapes.
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4.1 Cylindrical pore shape

The schematic model for the interaction between a spherical molecule and a cylindri-
cal pore is similar to Fig. 1a by replacing the single atom with a sphere of radius a.
The distance δ from the centre of the sphere to a typical point on the surface of the
cylindrical pore is given by δ2 = b2 + (z − Z − L)2, where b is the radius of the pore
of length L , and Z is the distance from the centre of the sphere to the pore opened
end. Consequently, the integral Jn becomes

Jn = b

π∫
−π

L∫
0

1

[b2 + (z − Z − L)2 − a2]n
dzdθ. (11)

By precisely the same method as in Sect. 3.1, the integral Jn can be obtained and in
this case we evaluate the definite integral at ψ = − tan−1(Z/

√
b2 − a2) and ψ =

− tan−1[(Z + L)/
√

b2 − a2].
The total interaction energy for a spherical molecule adsorbed into a cylindrical

pore is given by

Ecc = πa2η1η2

[
−4A

(
J3 + 2a2 J4

)
+ 4B

5

(
5J6 + 80a2 J7 + 336a4 J8

+512a6 J9 + 256a8 J10

)]
,

where η1 and η2 denote the mean atomic surface density for a cylindrical pore and a
spherical molecule, respectively, and Jn is defined by (11).

4.2 Square prismatic pore shape

The total interaction energy between a spherical molecule and a square prismatic pore
is four times the interaction energy between a sphere and a plane. Hence in this sec-
tion, we determine the interaction energy between the plane of dimension L in length
and 2b in width and the sphere with a radius of a. The pore is assumed to be located
co-axially to the z-axis as shown in Fig. 1b, where the atom in the figure is replaced
by the sphere. The distance δ from the centre of the sphere to a typical surface element
on the pore is then given by δ2 = b2 + s2 + (z − Z − L)2, where s represents the
coordinate x or y and s ∈ (−b, b). From (10), we may deduce

Jn =
L∫

0

b∫
−b

1

[b2 + s2 + (z − Z − L)2 − a2]n
dsdz. (12)

where we note that b is referred to the radius of the pore.
Using the same technique as described in Sect. 3.2, the integral Jn can be evaluated

for a given value n. Consequently, the total interaction energy for a spherical molecule
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and a square prismatic pore is given by

Ecb = 4πa2η1η2

[
−4A

(
J3 + 2a2 J4

)
+ 4B

5

(
5J6 + 80a2 J7 + 336a4 J8

+512a6 J9 + 256a8 J10

)]
,

where Jn is given by (12), and again the factor 4 arises from the fact that a square
prismatic pore comprises four sides of identical planes.

4.3 Conical pore shape

The model for the system of a spherical molecule interacting with a conical pore
shape is depicted in Fig. 1c where we replace the single atom by a sphere of radius
a. The vertex of the cone is assumed to be located at the origin, where the vertex
angle is denoted by 2α with the cone base radius of b. Moreover, the length of the
conical pore is assumed to be L where L = b/ tan α. The distance δ is then given by
δ2 = z2 sec2 α − 2(Z + L)z + (Z + L)2.

By using the continuum approximation together with the surface integral method,
we may deduce

Jn = tan α

cosα

π∫
−π

L∫
0

z

[z2 sec2 α − 2(Z + L)z + (Z + L)2]n
dzdθ. (13)

The analytical expression for the above equation can be determined utilizing the same
technique as described in Sect. 3.3. Further, the total interaction energy for a spherical
molecule and a conical pore shape is given by

Eco = πa2η1η2

[
−4A

(
J3 + 2a2 J4

)
+ 4B

5

(
5J6 + 80a2 J7 + 336a4 J8

+ 512a6 J9 + 256a8 J10

)]
,

where Jn is given by (13).
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5 Numerical results

In this paper, we consider the adsorption of a water molecule (H2O) into a pore of
silica gel (SiO2). We assume that a water molecule can be thought of as a composition
of a single oxygen atom at the centre and a cloud of two hydrogen atoms at the surface
of the spherical water molecule. As a result, the total interaction energy of the system
comprises (i) the interaction between a single atom and a pore, and (ii) the interaction
between a sphere and a pore. Further, there are two different interactions for silica gel,
SiO2, and the single oxygen atoms which are Si–O and O–O, so that the interaction
energy (i) consists of one-third for the interaction energy between Si–O, and two-third
for the interaction energy between O–O as a proportion of atoms. Similarly, there
are two interactions for the silica gel and the assumed spherical hydrogen molecule,
therefore the interaction (ii) comprises one-third for the interaction between Si–H and
two-third for the interaction between O–H.

The Lennard-Jones constants for hydrogen, silicon and oxygen atoms are taken
from [22], and they are presented in Table 1. Moreover, the radius of a spherical
hydrogen molecule is assumed to be 0.9584 Å which is a bond length between oxygen
and hydrogen atoms in a water molecule.

For the three types of pore, Figs. 3, 4, and 5 present the relation between the total
potential energy and the distance Z , where the positive (negative) Z indicates that the

Table 1 Numerical values for
the Lennard-Jones constants Interaction ε(eV × 10−2) σ(Å)

H–H 0.5146 2.827

Si–Si 1.7400 4.295

O–O 0.9195 3.467

Fig. 3 Energy profiles of a water molecule absorbed into a cylindrical silica gel pore with various pore
radii b and L = 20 Å
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Fig. 4 Energy profiles of a water molecule absorbed into a square prismatic silica gel pore with various
pore radii b and L = 20 Å

water molecule is outside (inside) the pore and the open end of the pore is located at
Z = 0. The water molecule will be adsorbed into the pore when the energy inside
the pore is lower than that outside the pore, otherwise an initial velocity is required
in order for the molecule to overcome an energy barrier at the open end of the pore
and to adsorb into the pore. As shown in Figs. 3 and 4, the water molecule begins
to enter the cylindrical and square prismatic silica gel pores when b = 4.009 and
3.7898 Å, respectively since the energy levels inside the pores are lower than those
of outside. We comment that the structures of the cylindrical and square prismatic
pores are similar in the sense that the radii of the pores are equal throughout the pores,
whereas the radius for the conical pore decreases in the negative z-direction toward
the vertex of the cone and as a result, the energy profile of the conical silica gel pore
is different from those shown in Figs. 3 and 4. We can see from Fig. 5 that for a given
pore size the molecule prefers to be at an equilibrium position where the energy is
minimum. The energy becomes repulsive as the molecule gets further inside toward
the vertex of the cone. From Fig. 5, the water molecule begins to enter the conical
pore when b ≥ 4.4575 Å since the global minimum energy occurs inside the pore. To
compensate for the repulsive energy received from the vertex, a larger opening radius
than those of cylindrical and square prismatic pores is required for the conical pore to
adsorb a water molecule.

The adsorption energy is plotted against the pore radius b for the cylindrical and
square prismatic pores in Fig. 6. In this paper, the adsorption energy is referred to as
the total interaction energy between a water molecule and the pore. We note that the
adsoprion energy for the conical pore is not determined since further along the pore
there is a large repulsive force from the cone vertex which causes the infinite value
of the adsorption energy. From Fig. 6, we find that the maximum adsorption energy
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Fig. 5 Energy profiles of a water molecule absorbed into a conical silica gel pore with various pore radii
b and L = 20 Å

Fig. 6 Adsorption energy for cylindrical and square prismatic pores

occurs when b = 4.5189 and 4.1903 Å for the cylindrical and square prismatic pores,
respectively.

6 Summary

Silica gel is widely used as a water adsorbent in many commercial applications. How-
ever, pore shapes and sizes of silica gel are variable due to the synthesis processes.
Since these parameters are key factors for the determination of the sorption capacity
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of water into the pore, this paper considers the effect of the pore structures of silica
gel upon the adsorption of a water molecule. In particular, we focus on three different
shapes of silica gel pore, namely cylinder, prismatic square and cone. We note that this
paper only consider the physisorption based on the van der Waals interaction between
the silica gel pores and a water molecule and this interaction is modelled using the
Lennard-Jones potential and a continuum approach. There is a need to reduce the pore
size of silica gel for better water sorption capacity [1]. Thus, this paper provides the
minimum radius required for each pore shape for adsorbing a water molecule. Our
results show that among the three shapes, the square prismatic pore requires the small-
est pore radius of 3.7898 Å. The minimum radii for the cylindrical and conical pores
are 4.009 and 4.4575, respectively. However, the critical radii which give rise to the
maximum adsorption energy for a cylindrical and a square prismatic pores are 4.5189
and 4.1903 respectively. Knowledge of these critical radii may be useful to tailor the
silica gel pores to adsorb water at highest capacity and at the fastest rate. Finally, the
analysis for the interaction between pores an a spherical molecule given in Sect. 4
presents a future research direction for the study of the immobilization of enzyme in
pores of silica gel and the encapsulation of drugs in nanopores
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